
Exact Byzantine Consensus in Directed Graphs∗

Lewis Tseng1,3, and Nitin Vaidya2,3

1 Department of Computer Science,
2 Department of Electrical and Computer Engineering, and

3 Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Email: {ltseng3, nhv}@illinois.edu

Technical Report

September 4, 2012†

Abstract

For synchronous point-to-point n-node networks of undirected links, it has been previously
shown that, to achieve consensus in presence of up to f Byzantine faults, the following two
conditions are together necessary and sufficient: (i) n ≥ 3f + 1 and (ii) network connectivity
greater than 2f . The first condition, that is, n ≥ 3f + 1, is known to be necessary for directed
graphs as well. On the other hand, the second condition on connectivity is not necessary for
directed graphs. So far, tight necessary and sufficient condition for Byzantine consensus in
directed graphs has not been developed.

This paper presents tight necessary and sufficient condition for achieving Byzantine consensus
in synchronous networks that can be represented as directed graphs. We provide a constructive
proof of sufficiency by presenting a new Byzantine consensus algorithm for directed graphs.

Further work is needed to improve the message overhead of Byzantine consensus in directed
graphs.

∗This research is supported in part by Army Research Office grant W-911-NF-0710287. Any
opinions, findings, and conclusions or recommendations expressed here are those of the authors
and do not necessarily reflect the views of the funding agencies or the U.S. government.

†Revised September 4, 2012 to add Section 8 on example networks.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
04 SEP 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Exact Byzantine Consensus in Directed Graphs

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Illinois at Urbana-Champaign,Department of Electrical and
Computer Engineering,Urbana,IL,61801

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
For synchronous point-to-point n-node networks of undirected links, it has been previously shown that, to
achieve consensus in presence of up to f Byzantine faults, the following two conditions are together
necessary and sufficient: (i) n ≥ 3f + 1 and (ii) network connectivity greater than 2f. The first
condition, that is, n ≥ 3f + 1, is known to be necessary for directed graphs as well. On the other
hand, the second condition on connectivity is not necessary for directed graphs. So far, tight necessary and
sufficient condition for Byzantine consensus in directed graphs has not been developed. This paper
presents tight necessary and sufficient condition for achieving Byzantine consensus in synchronous
networks that can be represented as directed graphs. We provide a constructive proof of sufficiency by
presenting a new Byzantine consensus algorithm for directed graphs. Further work is needed to improve
the message overhead of Byzantine consensus in directed graphs.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

31

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

In a network of n nodes with up to f Byzantine faulty nodes, it is well-known that the following two
conditions together are both necessary and sufficient for the existence of exact Byzantine consensus
algorithms [5, 2] in networks of undirected links (i.e., undirected graphs).

• n ≥ 3f + 1, and

• The connectivity of the underlying communication graph is at least 2f + 1.

In this work, we consider algorithms for achieving exact Byzantine consensus in synchronous
point-to-point networks that are modeled by arbitrary directed graphs, i.e., the communication
between two neighboring nodes is not necessarily bi-directional. Consider a network of n nodes,
of which at most f nodes may be Byzantine faulty. We assume that each node is given an initial
input in {0, 1}. The Byzantine consensus algorithms of interest must satisfy the following three
properties, where xi denotes node i’s input:

• Termination: every fault-free node i eventually decides on an output value yi.

• Agreement: the output values of all the fault-free nodes are equal, i.e., there exists y such
that, for every fault-free node i, yi = y.

• Validity: for every fault-free node i, there exists a fault-free node k such that the output
value yi = xk.

2 System Model

Communication model: The system is assumed to be synchronous. The synchronous communication
network consisting of n nodes is modeled as a simple directed graph G(V, E), where V is the set
of n nodes, and E is the set of directed edges between the nodes in V. We assume that n ≥ 2,
since the consensus problem for n = 1 is trivial. Node i can transmit messages to another node j if
and only if the directed edge (i, j) is in E . Each node can send messages to itself as well, however,
for convenience, we exclude self-loops from set E . That is, (i, i) ̸∈ E for i ∈ V. With a slight
abuse of terminology, we will use the terms edge and link, and similarly the terms node and vertex,
interchangeably.

All the links (i.e., communication channels) are reliable, FIFO (first-in first-out) and deliver
each transmitted message exactly once. When node i wants to send message M on link (i, j) to
node j, it puts the message M in a send buffer for link (i, j). No further operations are needed
at node i; the mechanisms for implementing reliable, FIFO and exactly-once semantics are trans-
parent to the nodes. When a message is delivered on link (i, j), it becomes available to node j in
a receive buffer for link (i, j). As stated earlier, the communication network is synchronous, and
each message sent on link (i, j) is delivered to node j within a bounded interval of time.

Failure Model: We consider the Byzantine failure model, with up to f nodes becoming faulty.
A faulty node may misbehave arbitrarily. Possible misbehavior includes sending incorrect and
mismatching (or inconsistent) messages to different neighbors. The faulty nodes may potentially
collaborate with each other. Moreover, the faulty nodes are assumed to have a complete knowledge

2

of the execution of the algorithm, including the states of all the nodes, contents of messages the
other nodes send to each other, the algorithm specification, and the network topology.

3 Terminology

Upper case italic letters are used to name subsets of V, and lower case italic letters are used to
name nodes in V.

Incoming neighbors:

• Node i is said to be an incoming neighbor of node j if (i, j) ∈ E .

• For set B ⊆ V, node i is said to be an incoming neighbor of set B if i ̸∈ B, and there exists
j ∈ B such that (i, j) ∈ E .

• Set B is said to have k incoming neighbors in set A if set A contains k distinct incoming
neighbors of B.

Directed paths: All paths used in our discussion are directed paths.

• Paths from a node i to another node j:

– An “(i, j)-path” is a directed path from node i to node j.

– An “(i, j)-path excluding X” is a directed path from node i to node j that does not
contain any node from set X.

– Two paths from node i to node j are said to be “disjoint” if the two paths only have
nodes i and j in common, with all remaining nodes being distinct.

– The phrase “d disjoint (i, j)-paths” refers to d pairwise disjoint paths from node i to
node j.

– The phrase “d disjoint (i, j)-paths exluding X” refers to d pairwise disjoint (i, j)-paths
that do not contain any nodes in set X.

• Every node i trivially has a path to itself. That is, for all i ∈ V, (i, i)-path exists excluding
V − {i}.

• Paths from a set S to node j ̸∈ S:

– A path is said to be an “(S, j)-path” if it is an (i, j)-path for some i ∈ S.

– An “(S, j)-path excluding X” is a (S, j)-path that does not contain any node from set
X.

– Two (S, j)-paths are said to be “disjoint” if the two paths only have node j in common,
with all remaining nodes being distinct (including the first nodes on the paths).

– The phrase “d disjoint (S, j)-paths” refers to d pairwise disjoint (S, j)-paths.

– The phrase “d disjoint (S, j)-paths exluding X” refers to d pairwise disjoint (S, j)-paths
that do not contain any nodes from set X.

3

Note that two disjoint (i, j)-paths are not disjoint ({i}, j)-paths. d disjoint (A, j)-paths can
possibly exist for set A only if |A| ≥ d.

For a directed path from node i to node j, node i will be said to be the “source” node on the
path. Thus, for given d disjoint (A, b)-paths there are d distinct sources nodes, all of which belong
to A.

4 Necessary Condition

For a correct Byzantine consensus algorithm to exist, the networks graph G(V, E) must satisfy the
necessary condition proved in this section. We state the necessary condition in two different forms
in this section, and show that the two forms are equivalent. Later in Theorem 4 we will state the
necessary condition in a different form.

4.1 Necessary Condition: First Version

Relations
e⇒ and ̸ e⇒ below are used frequently in our discussion.

Definition 1 For disjoint sets1 of nodes A and B, where B is non-empty:

• A
e⇒ B iff set A contains at least f + 1 distinct incoming neighbors of B.

That is, | {i | (i, j) ∈ E , i ∈ A, j ∈ B} | > f .

• A ̸ e⇒ B iff A
e⇒ B is not true.

Note that when A = Φ, and B ̸= Φ, we have

A ̸ e⇒ B

Theorem 1 Suppose that a correct Byzantine consensus algorithm exists for G(V, E). For any
partition2 L,R,C, F of V, such that both L and R are non-empty, and |F | ≤ f , either L∪C

e⇒ R,
or R ∪ C

e⇒ L.

Proof: The proof is presented in Appendix A. �

4.2 Necessary Condition: Second Version

Definition 2 Given a partition A,B, F of V such that |F | ≤ f , set A is said to propagate in V − F
to set B if either (i) B = Φ, or (ii) for each node b ∈ B, there exist at least f+1 disjoint (A, b)-paths
excluding F .

We will denote the fact that set A propagates in V − F to set B by the notation

A
V−F B

1Sets A and B are said to be disjoint if A∩B = Φ. As per this definition, any set A is disjoint with empty set Φ.
2Sets X1,X2, X3, ..., Xp are said to form a partition of set X provided that (i) ∪1≤i≤pXi = X, and (ii) Xi∩Xj = Φ

if i ̸= j.

4

When it is not true that A
V−F B, we will denote that fact by

A
V−F
̸ B

Lemma 1 Given a partition A,B, F of V such that B is non-empty, and |F | ≤ f , if A
V−F B,

then size of A must be at least f + 1.

Proof: By definition, there must be at least f+1 disjoint (A, b)-paths excluding F for each b ∈ B.
Each of these f + 1 disjoint paths will have a distinct source node in A. Therefore, such f + 1
disjoint paths can only exist if A contains at least f + 1 distinct nodes. �

We now state the second form of the necessary condition.

Theorem 2 Suppose that a correct Byzantine consensus algorithm exists for G(V, E). Then for

any partition A,B, F of V, where A and B are both non-empty, and |F | ≤ f , either A
V−F B or

B
V−F A.

Proof: Suppose that a correct Byzantine consensus algorithm exists for G(V, E). Therefore, G
must satisfy the condition in Theorem 1. Theorem 2 is proved below using Lemmas 2 through
4. Lemmas 2 through 4 together prove that the condition in Theorem 1 implies the condition in
Theorem 2. �

Lemma 2 Assume that the condition in Theorem 1 holds for G(V, E). Then, for any partition

A,B, F of V, where A is non-empty, and |F | ≤ f , if B ̸ e⇒ A, then A
V−F B.

Proof: If B = Φ, then by Definition 2, the lemma is trivially true. In the rest of this proof,
assume that B ̸= Φ.

Add a new (virtual) node v to graph G, such that, (i) v has no incoming edges, (ii) v has an
outgoing edge to each node in A, and (iii) v has no ougoing edges to any node that is not in A.
Let G+v denote the graph resulting after the addition of v to G(V, E) as described above.

We want to prove that A
V−F B. Equivalently,3 we want to prove that, in graph G+v, for each

b ∈ B, there exist f+1 disjoint (v, b)-paths excluding F . We will prove this claim by contradiction.

Suppose that A
V−F
̸ B, and therefore, there exists a node b ∈ B such that there are at most

f disjoint (v, b) paths excluding F in G+v. There is no direct edge from v to b. Then Menger’s
theorem [8] implies that there exists a set F1 ⊆ (A ∪ B) − {b} with |F1| ≤ f , such that, in graph
G+v, there is no (v, b)-path excluding F ∪ F1. In other words, all (v, b)-paths exluding F contain
at least one node in F1.

Let us define the following sets L,R,C:

3Justification: Suppose that A
V−F B. By the definition of A

V−F B, for each b ∈ B, there exist at least f + 1
disjoint (A, b)-paths excluding F – these paths only share node b. Since v has outgoing links to all the nodes in A,
this implies that there exist f + 1 disjoint (v, b)-paths excluding F in G+v – these paths only share nodes v and b.
Now, let us prove the converse. Suppose that there exist f + 1 disjoint (v, b)-paths excluding F in G+v. Node v has
outgoing links only to the nodes in A, therefore, from the (f + 1) disjoint (v, b)-paths excluding F , if we delete node
v and its outgoing links, then the shortened paths are disjoint (A, b)-paths excluding F .

5

• L = A.

L is non-empty, because A is non-empty.

• R = { i | i ∈ B − F1 and there exists (i, b)-path excluding F ∪ F1}.
Thus, R ⊆ B − F1 ⊆ B.
Note that b ∈ R. Thus, R is non-empty.

• C = B −R.

Thus, C ⊆ B. Since R ⊆ B, it follows that R ∪ C = B.

Observe that L,R,C are disjoint sets, and L ∪R ∪ C = A ∪B. Since set F1 ⊆ A ∪B, L = A, and
R ∩ F1 = Φ, we have F1 ⊆ L ∪ C, and F1 ∩ B ⊆ C. Thus, set C can be partitioned into disjoint
sets B1 and B2 such that

• B1 = C ∩ F1 = B ∩ F1 ⊆ C ⊆ B, and

• B2 = C −B1 ⊆ C ⊆ B. Note that B2 ∩ F1 = Φ.

We make the following observations:

• For any x ∈ A− F1 = L− F1 and y ∈ R, (x, y) ̸∈ E
Justification: Recall that virtual node v has a directed edge to x. If edge (x, y) were to exist
then there would be a (v, b)-path via nodes x and y excluding F ∪F1 (recall that y has a path
to b excluding F ∪ F1). This contradicts the definition of set F1.

• For any p ∈ B2, and q ∈ R, (p, q) ̸∈ E
Justification: If edge (p, q) were to exist, then there would be a (p, b)-path via node q excluding
F ∪ F1, since q has a (q, b)-path excluding F ∪ F1. Then node p should have been in R by
the definition of R. This is a contradiction to the assumption that p ∈ B2, since B2 ∩ R ⊆
C ∩R = Φ.

Thus, all the incoming neighbors of set R are contained in F1 (note that F1 = (A ∩ F1) ∪ B1).
Recall that F1 ⊆ L ∪ C. Since |F1| ≤ f , it follows that

L ∪ C ̸ e⇒ R (1)

By assumption in the lemma, B ̸ e⇒ A. By definitions of L,R,C above, we have A = L and
B = C ∪R. Thus,

C ∪R ̸ e⇒ L (2)

(1) and (2) contradict the condition in Theorem 1. Thus, we have proved that A
V−F B. �

Lemma 3 Assume that the condition in Theorem 1 holds for G(V, E). Consider a partition A,B, F

of V, where A,B are both non-empty, and |F | ≤ f . If B
V−F
̸ A then there exist A′ and B′ such

• A′ and B′ are both non-empty,

• A′ and B′ form a partition of A ∪B,

• A′ ⊆ A and B ⊆ B′, and

• B′ ̸ e⇒ A′.

6

Proof: Suppose that B
V−F
̸ A.

Add a new (virtual) node w to graph G, such that, (i) w has no incoming edges, (ii) w has an
outgoing edge to each node in B, and (iii) w has no outgoing edges to any node that is not in B.
Let G+w denote the graph resulting after addition of w to G(V, E) as described above.

Since B
V−F
̸ A, for some node a ∈ A there exist at most f disjoint (B, a)-paths excluding F .

Therefore, there exist at most f disjoint (w, a)-paths excluding F in G+w.
4 Then, by Menger’s

theorem [8], there must exist F1 ⊆ (A∪B)−{a}, |F1| ≤ f , such that, in graph G+w, all (w, a)-paths
excluding F contain at least one node in F1.

Define the following sets (also recall that V − F = A ∪B):

• L = { i | i ∈ V − F − F1 and there exists an (i, a)-path excluding F ∪ F1 }

• R = { j | j ∈ V − F − F1 and there exists in G+w a (w, j)-path excluding F ∪ F1 }
Set R contains B − F1 since all nodes in B have edges from w.

• C = V − F − L−R = (A ∪B)− L−R. Observe that F1 ⊆ C (because nodes of F1 are not
in L ∪R). Also, by definition of C, sets C and L ∪R are disjoint.

Observe the following:

• Sets L and R are disjoint, and set L ⊆ A− F1 ⊆ A.

Justification: F1 ∩ L = F1 ∩R = Φ. By definition of F1, all (w, a)-paths excluding F contain
at least one node in F1. If L ∩ R were to be non-empty, we can find a (w, a)-path excluding
F ∪ F1, which is a contradiction.

Note that V−F −F1 = (A∪B)−F1; therefore, L ⊆ (A∪B)−F1. B−F1 ⊆ R, since all nodes
in B − F1 have links from w. Since L and R are disjoint, it follows that (B − F1) ∩ L = Φ,
and therefore, (A− F1) ∩ L = L; that is, L ⊆ A− F1 ⊆ A.

• For any x ∈ C − F1 and y ∈ L, (x, y) ̸∈ E .
Justification: If such a link were to exist, then x should be in L, which is a contradiction
(since C,L are disjoint).

• There are no links from nodes in R to nodes in L.

Justification: If such a link were to exist, it would contradict the definition of F1, since we
can now find a (w, a)-path excluding F ∪ F1.

Thus, all the incoming neighbors of set L must be contained within F1. Recall that F1 ⊆ C and
|F1| ≤ f . Thus,

R ∪ C ̸ e⇒ L (3)

Now define, A′ = L, B′ = R ∪ C. Observe the following:

• A′ and B′ form a partition of A ∪B.

Justification: L,R,C are disjoint sets, therefore A′ = L and B′ = R ∪ C are disjoint. By the
definition of sets L,R,C it follows that A′ ∪B′ = L ∪ (R ∪ C) = V − F = A ∪B.

4See footnote 3.

7

• A′ is non-empty and A′ ⊆ A.

Justification: By definition of set L, set L contains node a. Thus, A′ = L is non-empty. We
have already argued that L ⊆ A.

• B′ is non-empty and B ⊆ B′.

Justification: Recall that L,R,C are disjoint. Thus, by definition of C, R∪C = (A∪B)−L.
Since L ⊆ A, it follows that B ⊆ R ∪ C = B′. Also, since B is non-empty, B′ is also
non-empty.

• B′ ̸⇒ A′

Justification: Follows directly from (3), and the definition of A′, B′.

This concludes the proof. �

Lemma 4 Theorem 1 implies Theorem 2.

Proof: Assume that the condition in Theorem 1 is satisfied by graphG(V, E). Consider a partition
of A,B, F of V such that A,B are non-empty and |F | ≤ f . To prove Theorem 2, we must show

that either A
V−F B or B

V−F A.

Consider two possibilities:

• B
V−F A: In this case the proof is complete.

• B
V−F
̸ A: Then by Lemma 3 there exist non-empty sets A′, B′ that form a partition of A∪B

such that A′ ⊆ A, B ⊆ B′, and B′ ̸ e⇒ A′. Lemma 2 then implies that A′ V−F B′. Since

A′ ⊆ A and A ∪B = A′ ∪B′, it follows that A
V−F B.5

�
Lemma 5 proves that the condition in Theorem 2 implies the condition in Theorem 1.

Lemma 5 Theorem 2 implies Theorem 1.

Proof: We will prove that Theorem 2 implies Theorem 1 by proving that if the condition in
Theorem 1 is violated, then the condition in Theorem 2 is violated as well.

Suppose that the condition in Theorem 1 is violated. Then there exists a partition L,R,C, F
of V such that L,R are both non-empty, |F | ≤ f ,

L ∪ C ̸ e⇒ R

and
R ∪ C ̸ e⇒ L.

5Explanation: Since A′ V−F B′, for each b ∈ B′, there exist f +1 disjoint (A′, b)-paths excluding F . Since B ⊆ B′,
it then follows that, for each b ∈ B ⊆ B′ there exist f + 1 disjoint (A′, b)-paths excluding F . Since A′ ⊆ A, and
F ∩ A = Φ, each (A′, b)-path excluding F is also a (A, b)-path excluding F . Thus, for each b ∈ B there exist f + 1

disjoint (A, b)-paths excluding F . This implies that A
V−F B.

8

Since L∪C ̸ e⇒ R, for any node r ∈ R, there exists a set Fr, |Fr| ≤ f , such that all the (L∪C, r)-
paths excluding F contain at least one node in Fr. Since L is a subset of L∪C, Menger’s theorem
[8] implies that there are at most f disjoint (L, r)-paths excluding F . Since r ∈ R ∪ C,

L
V−F
̸ R ∪ C

Similarly, since R ∪C ̸ e⇒ L, for any node l ∈ L, there exists a set Fl, |Fl| ≤ f , such that all the
(R ∪ C, l)-paths excluding F contain at least one node in Fl. Menger’s theorem [8] then implies
that there are at most f disjoint (R ∪ C, l)-paths excluding F . Thus,

R ∪ C
V−F
̸ L

Define A = L, and B = R ∪ C. Thus, A,B, F is a partition of V such that |F | ≤ f and A,B are

non-empty. The two conditions derived above imply that A
V−F
̸ B and B

V−F
̸ A, violating the

condition in Theorem 2. �

Lemmas 4 and 5 imply that the conditions in Theorems 1 and 2 are equivalent.

4.3 Corollaries

Corollary 1 Suppose that a correct Byzantine consensus algorithm exists for G(V, E). Then size
of set V (i.e., n) must be at least 3f + 1.

Proof: Since n ≥ 3f + 1 is a necessary condition for Byzantine consensus for undirected graphs
[5], it follows that n ≥ 3f + 1 is also necessary for directed graphs. This necessary condition can
also be derived from Theorem 1 as follows.

For f = 0, the corollary is trivially true. Now consider f > 0. The proof is by contradiction.
Suppose that n ≤ 3f . As stated previously, we assume n ≥ 2, since consensus for n = 1 is trivial.
Partition V into three subsets L,R, F such that |F | ≤ f , 0 < |L| ≤ f , and 0 < |R| ≤ f . Such a
partition can be found because 2 ≤ |V| ≤ 3f . Define C = Φ. Since L,R are both non-empty, and
contain at most f nodes each, we have L ∪ C ̸ e⇒ R and R ∪ C ̸ e⇒ L, violating Theorem 1. �

Corollary 2 For f > 0, suppose that a correct Byzantine consensus algorithm exists for G(V, E).
Then each node must have at least 2f + 1 incoming neighbors.

Proof: The proof is by contradiction. Suppose that for some node i, the number of incoming
neighbors of i is at most 2f . Partition V −{i} into two sets L and F such that L is non-empty and
contains at most f incoming neighbors of i, and |F | ≤ f . It should be easy to see that such L,F
can be found.

Define C = Φ and R = {i}. Then, since f > 0 and |R| = 1, it follows that

R ∪ C ̸ e⇒ L

Also, since L contains at most f incoming neighbors of node i, and set R contains only node i,

L ∪ C
e⇒ R

The above two conditions violate the condition in Theorem 1. �

9

Corollary 3 For f > 0, suppose that the graph G(V, E) satisfies the condition in Theorem 1, and
|V| = n = 3f +1. Then for any pair of nodes i, j ∈ V, either (i, j) ∈ E, or there exist at least 2f +1
disjoint (i, j)-paths in G(V, E).

Proof: The proof is by contradiction. Suppose that there exist two nodes i and j such that
(i, j) /∈ E , and there are at most 2f node-disjoint paths from i to j in G. Then according to
Menger’s theorem [8], there must exist a set of nodes P ⊂ V − ({i} ∪ {j}) such that |P | ≤ 2f , and
all (i, j)-paths contain at least one node in P .

Define sets X, Y and Z as follows:

• k ∈ X iff there exists a (i, k)-path excluding P . i ∈ X, thus X is non-empty.

• k ∈ Y iff there exists a (k, j)-path excluding P . j ∈ Y , thus Y is non-empty.

• Z = V −X − Y − P .

Observe that P is disjoint from X,Y, Z by definition, and Z is disjoint from X,Y, P also by
definition. Further, X and Y are disjoint. Suppose not, then there exists a node x ∈ X ∩Y . Then,
by definition of X and Y , there exists a (i, j)-path excluding P via x, violating the definition of P .
Thus, X ∩ Y = Φ. Hence, X,Y, Z, P form a partition of V. Observe that there are no links from
nodes in X to nodes in Y ,6 no links from nodes in Z to nodes in Y ,7 and and no links from X to
nodes in Z.8

Consider the following cases:

• |Y | ≤ f : In this case, define F to be a subset of V such that |F | = f , and if |P | ≥ f then
F ⊆ P , else P ⊆ F . Define R = Y , L = V − F − R, and C = Φ. By definition of X,Y, P it
follows that all the incoming neighbors of R are either in F ∩P or in L∩P . By definition of
F and the constraint that |P | ≤ 2f , it follows that |L∩P | ≤ f . Therefore, L∪C ̸ e⇒ R. Also,
because |R| = |Y | ≤ f , we have R ∪ C ̸ e⇒ L.

• f < |Y | ≤ 2f and |P | ≤ f : Define F such that |F | = f and F ⊆ Y . Define R = Y − F ,
L = V − F − R, and C = Φ. Observe that |R| = |Y | − f ≤ f . Therefore, R ∪ C ̸ e⇒ L. Also,
Y = R ∪ F . Thus, L = X ∪ Z ∪ P . There are no links from the nodes in X ∪ Z to the nodes
in Y , and therefore, no links from the nodes in X ∪ Z to the nodes in R. Thus, the only
incoming neighbors of R that are also in L are in P . Since |P | ≤ f , the number of incoming
neighbors of R in L is at most f . Also, C = Φ. Therefore, L ∪ C ̸ e⇒ R.

• f < |Y | ≤ 2f and f < |P | ≤ 2f : Define F such that |F | = f and contains |P | − f nodes in
P and 2f − |P | nodes in Y . Define R = Y − F , L = V − F − R, and C = Φ. Observe that
|Y | = |V|−|P |−|X|−|Z|, and thus, |R| = |Y |−(2f−|P |) = 3f+1−|P |−|X|−|Z|−(2f−|P |) =
f + 1 − |X| − |Z|. Since i ∈ X, and is non-empty, |R| ≤ f . Thus, R ∪ C ̸ e⇒ L. Also,
L = X ∪ Z ∪ (P − F). There are no links from the nodes in X ∪ Z to the nodes in Y . Since
R ⊆ Y , there are no links from the nodes in X∪Z to the nodes in R. Thus, the only incoming
neighbors of R that are also in L are in P − F . Since |P − F | = |P | − (|P | − f) = f . Hence,
L ∪ C ̸ e⇒ R.

6Else there would be a (i, j)-path excluding P .
7Else there would be a path from Z to j, violating the definition of Y and Z.
8Else there would be a path from i to Z, violating the definition of X and Z.

10

• |Y | > 2f and |P | ≤ f : Define F such that |F | = f and F ⊂ Y . Define R such that |R| = f
and R ⊂ (Y −F). This is possible, since |Y | > 2f . Then, define L = V −F −R, and C = Φ.
By definition, |R| = f . Therefore, R ∪ C ̸ e⇒ L. Also, there are no links from the nodes in
X ∪ Z to the nodes in R. Thus, the only incoming neighbors of R that are also in L are in
P ∪ (Y − F − R). Note that |P ∪ Y | ≤ 3f , since n = 3f + 1 and X is non-empty. Hence,
|P ∪ (Y − F −R)| = |P ∪ Y | − |F ∪R| ≤ 3f − 2f = f . Hence, L ∪ C ̸ e⇒ R.

• |Y | > 2f and |P | > f : This case is not possible because Y ∩ P = Φ, and n = 3f + 1.

In each case above, we have found a partition of the graph that violates the necessary condition
stated in Theorem 1. Thus, Corollary 3 must be true.

�

5 Sufficiency Proof: Preliminaries

When f = 0, all the nodes are fault-free, and the proof of sufficiency is trivial. The necessary
condition for f = 0 implies that there must exist at least one node, say node i, that has directed
paths to all the remaining nodes in the network. Then consensus can be achieved simply by node
i routing its input to all the other nodes, and adopting node i’s input as the output for consensus.

In the rest of our discussion below, we will assume that f > 0. We will show that the necessary
conditions in Theorems 1 and 2 are also sufficient by providing an algorithm that achieves exact
consensus in any graph that satisfies those conditions. In the rest of the discussion, we assume
that graph G(V, E) satisfies the conditions in Theorems 1 and 2, even if this is not stated explicitly
elsewhere below (recall that the two necessary conditions are equivalent). Also, by Corollaries 1
and 2, n > 3f , and the number of incoming neighbors of each node is at least 2f + 1.

In this section, we first introduce some definitions that are useful in the presentation of the
algorithm.

Definition 3 Graph decomposition: Let H be a subgraph of G(V, E). Partition graph H into
non-empty strongly connected components, H1,H2, · · · ,Hh, where h is a non-zero integer dependent
on graph H, such that nodes i, j ∈ Hk if and only if there exist (i, j)- and (j, i)-paths both excluding
nodes outside Hk.

Construct a graph Hd wherein each strongly connected component Hk above is represented by
vertex ck, and there is an edge from vertex ck to vertex cl if and only if the nodes in Hk have
directed paths in H to the nodes in Hl.

It is known that the decomposition graph Hd is a directed acyclic graph [1].

Definition 4 Source component: Let H be a directed graph, and let Hd be its decomposition as
per Definition 3. Strongly connected component Hk of H is said to be a source component if the
corresponding vertex ck in Hd is not reachable from any other vertex in Hd.

Definition 5 Reduced Graph: For a given graph G(V, E), and sets F ⊂ V, F1 ⊂ V − F , such
that |F | ≤ f and |F1| ≤ f , reduced graph GF,F1(VF,F1 , EF,F1) is defined as follows: (i) VF,F1 = V−F ,
and (ii) EF,F1 is obtained by removing from E all the links incident on the nodes in F , and all the
outgoing links from nodes in F1. That is, EF,F1 = E − {(i, j) | i ∈ F or j ∈ F} − {(i, j) | i ∈ F1}.

11

Theorem 3 Suppose that graph G(V, E) satisfies the condition in Theorem 1. For graph G(V, E),
every reduced graph obtained as per Definition 5 must contain exactly one source component.

Proof: Consider F ⊂ V, F1 ⊂ V −F such that |F | ≤ f and |F1| ≤ f , as specified in Definition 5.
Since F is a strict subset of V, the reduced graph GF,F1 contains at least one node; therefore, at
least one source component must exists in GF,F1 . We now prove that GF,F1 cannot contain more
than one source component. The proof is by contradiction. Suppose that the reduced graph GF,F1

includes at least two source components.

Let the sets of nodes in two such source components of GF,F1 be denoted L and R, respectively.
Let C = V − F − L − R. Observe that L,R,C, F form a partition of the nodes in V. Since L is
a source component in GF,F1 it follows that there are no directed links in EF,F ′ from any node in
C ∪R to the nodes in L. Similarly, since R is a source component in GF,F1 it follows that there are
no directed links in EF,F1 from any node in L ∪ C to the nodes in R. These observations, together
with the manner in which EF,F1 is defined, imply that in G(V, E): (i) set L has at most f distinct
incoming neighbors in C ∪R, and (ii) set R has at most f distinct incoming neighbors in L ∪ C.

Therefore, in graph G(V, E), C∪R ̸⇒ L and L∪C ̸⇒ R, contradicting the condition in Theorem
1. Thus, GF,F ′ must contain exactly one source component. �

Corollary 4 Suppose that graph G(V, E) satisfies the condition in Theorem 1. For any F ⊂ V and
F1 ⊂ V −F , such that |F | ≤ f and |F1| ≤ f , let S denote the set of nodes in the source component
of GF,F1. Then,

S
V−F V − F − S

Proof: Since GF,F1 contains non-zero number of nodes, its source component S must be non-
empty. If V − F − S is empty, then the corollary follows trivially by Definition 2. Suppose that
V − F − S is non-empty. Since S is a source component in GF,F1 , it has no incoming neighbors in
GF,F1 ; therefore, all of the incoming neighbors of S in V − F in graph G(V, E) must belong to F1.
Since |F1| ≤ f , we have,

(V − S − F) ̸ e⇒ S

Lemma 2 then implies that

S
V−F V − F − S

�

Definition 6 For F ⊂ V, graph G−F is obtained by removing from G(V, E) all the nodes in F ,
and all the links incident on nodes in F .

Lemma 6 For any F ⊂ V, F1 ⊂ V − F , such that |F | ≤ f , |F1| ≤ f :

• The source component of GF,F1 is strongly connected in G−F .

• The source component of GF,F1 does not contain any nodes in F1.

12

Proof: By Definition 3, each pair of nodes i, j in the source component of graph GF,F1 has at
least one (i, j)-path and at least one (j, i)-path consisting of nodes only in GF,F1 , i.e., excluding
nodes in F .

Since F1 ⊂ V − F , GF,F1 contains other nodes besides F1. Although nodes of F1 belong to
graph GF,F1 , the nodes in F1 do not have any outgoing links in GF,F1 . Thus, any node in F1 cannot
have paths to any other node in GF,F1 . Then, due to the connetedness requirement of a source
component, it follows that no nodes of F1 can be in the source component.

�

Theorem 4 Suppose that a correct Byzantine consensus algorithm exists for G(V, E). Then the
following condition must hold:

For any F ⊂ V and Fx ⊂ V − F such that |F | ≤ f and |Fx| ≤ f , let S be the source component
in the reduced graph GF,Fx as per Definition 5. For any F ′ ⊂ V − F with |F ′| ≤ f , for every node
i ∈ V − F − F ′ − S, there exists in G(V, E) a (S, i)-path excluding F ∪ F ′. Note that F ′ may or
may not equal to Fx.

Proof: We prove this theorem by showing that the condition in Theorem 1 implies the condition
in Theorem 4. The proof is by contradiction. Suppose that the condition in Theorem 4 is not
true. Then there exist F ⊂ V, Fx ⊂ V − F , and F ′ ⊂ V − F , with |F | ≤ f , |Fx| ≤ f , |F ′| ≤ f ,
and S being the the source component of GF,Fx , such that in graph G(V, E) there is no (S, i)-path
excluding F ∪ F ′ for some node i ∈ V − F − F ′ − S. Now, let us define

• L = S.

L is non-empty due to the definition of source component.

• R = {j | j ∈ V − F − F ′ and there exists (j, i)-path excluding F ∪ F ′}.
Node i ∈ R by the definition of (i, i)-path, and thus, R is also non-empty.

• C = V − F − L−R.

Observe that F,L,R,C are disjoint and together form partition of G such that |F | ≤ f , and
L,R are non-empty.

Recall that by definition, the source component does not have any incoming neighbors in GF,Fx

from V − F − S = V − F − L = C ∪R. Therefore, in G(V, E), C ∪R ̸ e⇒ L.

Then, we make the following two observations:

• S ∩R = Φ; otherwise, there is a (S, i)-path excluding F ∪ F ′, violating the assumption.

• For any s ∈ S and j ∈ R, (s, j) ̸∈ E ; otherwise, there is a (S, i)-path excluding F ∪ F ′,
violating the assumption.

• For any pair of nodes c ∈ C − F ′ and r ∈ R, (c, r) ̸∈ E ; otherwise, there is a (c, i)-path
excluding F ∪ F ′ via node r, violating the definition of R.

Therefore, all the incoming neighbors of set R in V − F are contained in F ′. Since |F ′| ≤ f ,
L ∪ C ̸ e⇒ R.

13

Thus, the partition L,R,C, F contradicts the condition in Theorem 1. �

Now, we show that the condition in Theorem 4 is sufficient.

Lemma 7 Assume that graph G(V, E) satisfies the condition in Theorem 4. Then it also satisfies
the condition in Theorem 1.

Proof: The proof is by contradiction. Suppose that G(V, E) does not satisfy the condition in
Theorem 1. Then there exists a partition L,R,C, F of V, where L,R are non-empty and |F | ≤ f
such that L ∪ C ̸ e⇒ R, and R ∪ C ̸ e⇒ L. That is,

• There exists FR ⊂ L∪C such that |FR| ≤ f , and there is no (L∪C, i)-path excluding F ∪FR

for all i ∈ R, and

• There exists FL ⊂ R∪C such that |FL| ≤ f , and there is no (R∪C, j)-path excluding F ∪FL

for all j ∈ L.

Note that FR may or may not overlap with FL.

Now, consider a reduced graph GF,FR
. Since there is no (L∪C, i)-path excluding F ∪FR for all

i ∈ R, the corresponding source component S is a subset of R. This observation and the definition
of FL imply that there is no (S, j)-path excluding F ∪ FL for any j ∈ L. This contradicts the
condition in Theorem 4. �

The necessary conditions in Theorems 1, 2 and 4 are thus equivalent. In the next section, we
will prove that these conditions are sufficient as well.

6 Algorithm BC

We now present a new algorithm, named Algorithm BC, and prove that it correctly achieves
Byzantine consensus. As shown below in the pseudo-code of Algorithm BC, the algorithm consists
of two loops, an OUTER loop, and an INNER loop. The OUTER loop of the algorithm considers
each subset F of V such that |F | ≤ f .9 For each such F , the INNER loop examines each partition
A,B of V − F such that A,B are both non-empty. For each such partition A,B, a non-empty set
S is identified such that S ⊆ V − F , and

S
V−F V − F − S

The INNER loop uses sub-algorithms Propagate and Equality. These sub-algorithms make use of
some state maintained by the nodes. We first discuss the node state, followed by the sub-algorithms.

6.1 Node State

Each node i maintains two state variables that are explicitly used in our algorithm: vi and ti. Each
node will have to maintain other states as well (such as the routes to other nodes), however, we do
not introduce additional notation for that.

9It also suffices to perform the outer loop for |F | = f .

14

• Variable vi: Initially, vi at any node i is equal to the input at node i. During the course of the
algorithm, vi at a node i may be updated several times. Value vi at the end of the algorithm
represents node i’s decision (or output) for the Byzantine consensus problem. The output at
each node is either 0 or 1.

At any time during the execution of the algorithm, the value vi at node i is said to be valid
if either of the following two conditions is true:

– vi = 0, and at least one fault-free node has input equal to 0

– vi = 1, and at least one fault-free node has input equal to 1

Initial value vi at a fault-free node i is valid because it equals its own input. Algorithm BC
ensures that vi at a fault-free node i always remains valid throughout the execution of the
algorithm.

• Variable ti: Variable ti at any node i may take a value in {0, 1,⊥}, where ⊥ is distinguished
from 0 and 1. The Propagate and Equality procedures take ti at participating nodes i as
input, and may also modify ti. Under some circumstances, vi at node i is set equal to ti in
order to update vi. We will discuss this in detail below.

6.2 Procedure Propagate(S,B)

Propagate(S,B) assumes that S ⊆ V − F , B ⊆ V − F , S ∩B = Φ and S
V−F B.

Propagate(S,B)

(1) Since S
V−F B, for each i ∈ B, there exist f + 1 disjoint (S, i)-paths that exclude F . The

source of each of these paths is in S; on each path, the corresponding source node, say node s,
sends10 ts to node i along the corresponding path. Intermediate nodes on these paths forward
received messages as necessary.

When a node does not receive an expected message, the message content is assumed to be ⊥.

(2) When any node i ∈ B receives f + 1 values along the f + 1 disjoint paths above: if the f + 1
values are all equal to 0, then ti := 0; else if the f + 1 values are all equal to 1, then ti := 1;
else ti :=⊥.
(Note that := denotes the assignment operator.)

For all j ̸∈ B, tj is not modified during Propagate(S,B). Also, for all k ∈ V , vk is not modified
during Propagate(S,B).

10All the nodes are aware of the “schedule” used for such transmissions, which is considered a part of the algorithm
specification.

15

Algorithm BC

(OUTER LOOP)
For each F ⊂ V, where |F | ≤ f < 0:

(INNER LOOP)

For each partition A,B of V − F such that A,B are non-empty, and A
V−F B:

STEP 1 of INNER loop:

• Case 1: A
V−F B and B

V−F
̸ A:

Let non-empty set S ⊆ A be a set such that S
V−F V − F − S, and S is strongly

connected in G−F .

(a) For all i ∈ S, ti := vi

(b) Equality(S)

(c) Propagate(S,V − F − S)

(d) At each j ∈ V − F − S: if tj ̸=⊥, then vj := tj

• Case 2: A
V−F B and B

V−F A:

Let non-empty set S ⊆ A ∪ B be a set such that S
V−F V − F − S, S is strongly

connected in G−F , and A
V−F (S −A). Either S ∩ A or S ∩ B is non-empty. Without

loss of generality, suppose that S ∩A is non-empty.

(e) For all nodes i ∈ A: ti = vi

(f) Propagate(A,S −A)

(g) Equality(S)

(h) Propagate(S,V − F − S)

(i) At each j ∈ V − F − (A ∩ S): if tj ̸=⊥, then vj := tj

STEP 2 of INNER loop:

(j) Each node k ∈ F receives vj from each j ∈ Nk, where Nk is a set consisting of f + 1 of
k’s incoming neighbors in V − F . If all the received values are identical, then vk is set
equal to this identical value; else vk is unchanged.

Figure 1: Algorithm BC (for f > 0): In the pseudo-code, := denotes the assignment operator.

16

6.3 Equality(A)

Equality(A) assumes that A ⊆ V − F , and that for each pair of nodes i, j ∈ A, an (i, j)-path
excluding F exists. That is, A is strongly connected in G−F (G−F is defined in Definition 6).

Equality(A)

(1) Each node i ∈ A sends ti to all other nodes in A along paths excluding F .

(2) Each node j ∈ A thus receives messages from all nodes in A. Node j checks whether values
received from all the nodes in A and its own tj are all equal, and also belong to {0, 1}. If
these conditions are not satisfied, then tj :=⊥; otherwise tj is not modified.

For any node k ̸∈ A, tk is not modified in Equality(A). For any node k ∈ V, vk is not modified in
Equality(A).

6.4 INNER Loop

For each F chosen in the OUTER loop, the INNER loop of Algorithm BC examines each partition

A,B of V −F such that A,B are both non-empty. From Theorem 2, we know that either A
V−F B

or B
V−F A. Therefore, with renaming of the partitions we can ensure that A

V−F B. Then,
depending on the choice of A,B, F , two cases may occur:

• Case 1: A
V−F B and B

V−F
̸ A

• Case 2: A
V−F B and B

V−F A

Now we will show that a suitable set S as required in each case in Algorithm BC exists:

• Case 1: A
V−F B and B

V−F
̸ A: Since B

V−F
̸ A, by Lemma 3, there exist non-empty sets

A′, B′ that form a partition of A ∪B = V − F such that A′ ⊆ A and

B′ ̸ e⇒ A′

Let F1 be the set of incoming neighbors of A′ in B′. Since B′ ̸ e⇒ A′, |F1| ≤ f . Then A′ has no
incoming neighbors in GF,F1 . Therefore, the source component of GF,F1 must be contained
within A′. Let S denote the set of nodes in this source component. Since S is the source
component, by Corollary 4,

S
V−F V − S − F.

Since S ⊆ A′ and A′ ⊆ A, S ⊆ A. Then, B ⊆ (A∪B)−S = V −S −F , therefore, V −S −F

is non-empty. Also, since S
V−F V − S − F , set S must be non-empty (by Lemma 1). By

Lemma 6, S is strongly connected in G−F .

• Case 2: A
V−F B and B

V−F A:

Since |V| = n > 3f , |A ∪ B| = |V − F | > 2f . In this case, we pick a non-empty set
F1 ⊂ A ∪ B = V − F such that |F1| = f , and find the source component of GF,F1 . Let the

17

set of nodes in the source component be denoted as S. Since S is the source component, by
Corollary 4,

S
V−F V − F − S

Also, since A
V−F B, and (S − A) ⊆ B, we have A

V−F (S −A). Also, since V − S − F

contains F1, V − S − F is non-empty, and since S
V−F V − S − F , set S must be non-empty

(by Lemma 1). By Lemma 6, S is strongly connected in G−F .

Now consider nodes in set F . As shown in Corollary 2, when f > 0, each node in V has at least
2f + 1 incoming neighbors. Since |F | ≤ f , for each k ∈ F there must exist at least f + 2 incoming
neighbors in V − F . This satisfies the requirement in step (j) of Algorithm BC.

6.5 Correctness of BC

In the discussion below, assume that F ∗ is the set of faulty nodes in the network (0 ≤ |F ∗| ≤ f
and 0 < f).

When discussing a certain iteration of the INNER loop, we sometimes add superscript start and
end to vi for node i below to indicate whether we are refering to vi at the start of that iteration,
or at the end of that iteration.

Lemma 8 states that the state vj of any fault-free node j at the end of an iteration of the
INNER loop equals the state of some fault-free node at the start of that iteration.

Lemma 8 For any given iteration of the INNER loop, for all fault-free j ∈ V, there exists a

fault-free node s such that vendj = vstarts .

Proof: We will first consider fault-free nodes in V − F in each of the two cases in the INNER
loop, and then consider the fault-free nodes in F .

Define set Z as the set of values for vi at all fault-free i ∈ V at the start of the INNER loop
iteration under consideration.

Z = {vstarti | i ∈ V − F ∗ }

• Case 1:

Observe that, in Case 1, vi remains unchanged for all fault-free i ∈ S; hence the claim of the
lemma is trivially true for fault-free i ∈ S.

We will now prove the claim for fault-free j ∈ V − F − S.

– step (a): Consider a fault-free node i ∈ S. At the end of step (a), ti is equal to vstarti ;
thus ti ∈ Z.

– step (b): In step (b), Equality(S) either keeps ti unchanged at fault-free node i ∈ S or
modifies it to be ⊥. Thus, now ti ∈ Z ∪ {⊥}.

– step (c): Consider a fault-free node j ∈ V − F − S. During Propagate(S,V − F − S),
j receives f + 1 values along f + 1 disjoint paths originating at nodes in S. Therefore,
at least one of the f + 1 values is received along a path that contains only fault-free
nodes; suppose that the value received by node j along this fault-free path is equal to
α. As observed above in step (b), ti at all fault-free nodes i ∈ S is in Z ∪{⊥}; therefore,

18

α ∈ Z∪{⊥}. Therefore, at node fault-free node j ∈ V−F −S, Propagate(S,V −F −S)
will result in tj ∈ {α,⊥} ⊆ Z ∪ {⊥}.

– step (d): Then it follows that, in step (d), at fault-free j ∈ V − F − S, if vj is updated,

then vendj ∈ Z. On the other hand, if vj is not updated, then vendj = vstartj ∈ Z.

• Case 2:

Observe that, in Case 2, vj remains unchanged for all fault-free j ∈ A ∩ S.

Now we prove the claim in the lemma for fault-free j ∈ V − F − (A ∩ S).

– step (e): For any fault-free node i ∈ A, at the end of step (e), ti ∈ Z.

– step (f): Consider a fault-free node m ∈ S−A. During Propagate(S, S−A), m receives
f + 1 values along f + 1 disjoint paths originating at nodes in A. Therefore, at least
one of the f + 1 values is received along a path that contains only fault-free nodes;
suppose that the value received by node m along this fault-free path is equal to α ∈ Z.
Therefore, at node m ∈ S−A, Propagate(S, S−A) will result in tm being set to a value
in {α,⊥} ⊆ Z ∪ {⊥}.
Now, for m ∈ S ∩A, tm is not modified in step (f), and therefore, for m ∈ S ∩A, tm ∈ Z
(see discussion of step (e) above).

Thus, we can conclude that, at the end of step (f), for all fault-free nodes m ∈ S,
tm ∈ Z ∪ {⊥}.

– step (g): In step (g), at each m ∈ S, Equality(S) either keeps tm unchanged, or modifies
it to be ⊥. Thus, at the end of step (g), for all fault-free m ∈ S, tm is in Z ∪ {⊥}.

– step (h): Consider a fault-free node j ∈ V − F − S. During Propagate(S,V − F − S), j
receives f + 1 values along f + 1 disjoint paths originating at nodes in S. Therefore, at
least one of the f +1 values is received along a path that contains only fault-free nodes;
suppose that the value received by node j along this fault-free path is equal to β. As
observed above, after step (g), for each fault-free node m ∈ S, tm ∈ Z ∪{⊥}. Therefore,
β ∈ Z ∪{⊥}, and at node j ∈ V −F −S, Propagate(S,V −F −S) will result in tj being
set to a value in {β,⊥} ⊆ Z ∪ {⊥}.

– step (i): From the discussion of steps (g) and (h) above, it follows that, in step (i), if vj

is updated at a fault-free j ∈ V − F − (S ∩ A), then vendj ∈ Z; on the other hand, if vj

is not modified, then vendj = vstartj ∈ Z.

Now consider a fault-free node k ∈ F . As shown above, at the start of step (j), vendj ∈ Z at
all fault-free j ∈ V − F . Since at least one of the nodes in Nk is fault-free, and of the f + 1 values
received by node k, at least one value must be in Z. Thus, if node k changes vk in step (j), then
the new value will also in Z. On the other hand, if node k does not change vk, then it remains in
Z by the definition of Z.

�

Lemma 9 Algorithm BC satisfies the validity condition for Byzantine consensus.

19

Proof: Observe that for each fault-free i ∈ V, initially, vi is valid, because it is equal to the
input at node i. Lemma 8 implies that after each iteration of the INNER loop of Algorithm BC,
vi remains valid at each fault-free node i. Therefore, when Algorithm BC terminates, vi at each
fault-free node i will satisfy the validity condition for Byzantine consensus. �

Lemma 10 Algorithm BC satisfies the termination condition for Byzantine consensus.

Proof: Recall that we are assuming a synchronous system, and the graph G(V, E) is finite. Thus,
Algorithm BC performs a finite number of iterations of the OUTER loop, and a finite number of
iteration of the INNER loop for each choice of F in the OUTER loop, the number of iterations
being a function of graph G. Hence, Algorithm BC will terminate after a bounded amount of time.

�

Lemma 11 Algorithm BC satisfies the agreement condition for Byzantine consensus.

Proof: Recall that F ∗ denotes the set of faulty nodes in the network (0 ≤ |F ∗| ≤ f).

Since the OUTER loop considers all possible F ⊆ V such that |F | ≤ f , eventually, the OUTER
loop will be performed with F = F ∗.

In the INNER loop for F = F ∗, different partitions A,B of V −F = V −F ∗ will be considered.
We will say that such a partition A,B is a “conformant” partition if vi = vj for all i, j ∈ A, and
vi = vj for all i, j ∈ B. A partition A,B that is not conformant is said to be “non-conformant”.
Further, we will say that an iteration is a “deciding” iteration if one of the following condition is
true.

• The partition considered in this iteration is conformant.

• The partition considered in this iteration is non-conformant; however, in the end of step
(b) of Case 1, and in the end of step (g) of Case 2, every node in the corresponding source
component S has the same value t. That is, for all i, j ∈ S, ti = tj .

Note that in both conditions, all the nodes in the corresponding source component S has the
identical value t in the deciding iteration. The iteration that is not deciding is said to be “non-
deciding”.

Claim 1 In the INNER loop for F = F ∗, value vi for each fault-free node i will stay unchanged in
every non-deciding iteration.

Proof: Suppose that the iteration is non-deciding. Then we will show that the updated value
vi stays unchanged for each fault-free node i. First, all the faulty nodes (F∗) are excluded, and
thus, during Equality(S) (step (b) of Case 1 or step (g) of Case 2), each node in S can receive
the value from other nodes in S correctly. Then, every node in S will set value t to be ⊥ in
the end of Equality(S), since by the definition of non-deciding iteration, there is a pair of nodes
j, k ∈ S such that tj ̸= tk. Hence, every node in V − F − S will receive f + 1 copies of ⊥ after
Propagate(S,V − F − S) (step (c) of Case 1 and step (h) of Case 2), and will set value t to ⊥.
Finally, in the end of the iteration, the value v at each node stays unchanged, since (i) nodes in S
(in Case 1) or in A ∩ S (in Case 2) will not change value v as specified by Algorithm BC and, (ii)

20

ti =⊥ for each node i ∈ V − F − S (in Case 1) or for each node i ∈ V − F − (A ∩ S). Note that
by assumption, there is no fault-free node in F , and hence, we do not need to consider STEP 2.
Therefore, the statement is proved. �

Let us divide the iterations of the INNER loop for F = F ∗ into three phases:

• Phase 1: Iterations of the INNER loop before the first deciding iteration

• Phase 2: The first deciding iteration

• Phase 3: Remaining iterations of the INNER loop for F = F ∗.

Claim 2 The INNER loop for F = F ∗ will eventually enter Phase 2.

Proof: Recall that the values are in {0, 1}, and hence, there exists at least one conformant
partition. By Claim 1, nodes in V −F will not change values during non-deciding iterations. Then,
since the INNER loop considers all partitions, the INNER loop will eventually consider either a
conformant partition, or a non-conformant partition such that every node in the corresponding
source component S has the same value t. �

Now, let us consider each phase separately:

• Phase 1: By Claim 1, the vi value at each fault-free node i ∈ V stays unchanged.

• Phase 2: Now, consider the first deciding iteration of the INNER loop.

Recall that all the nodes in V −F = V −F ∗ are fault-free. Let S be the corresponding source
components in this iteration. We will show that in this iteration, every node in S will have
the same t value. Consider two scenarios:

– The partition is non-conformant: Then by definition of deciding iteration, we can find
an α ∈ {0, 1} such that vi = α for all i ∈ S after step (b) of Case 1, or after step (g) of
Case 2.

– The partition is conformant: Let vi = α for all i ∈ A for α ∈ {0, 1}. Such an α exists
because the partition is conformant.

∗ Case 1: In this case, recall that S ⊆ A. Therefore, after steps (a) and (b) both, tj
at all j ∈ S will be identical, and equal to α.

∗ Case 2: This is similar to Case 1. At the end of step (e), for all nodes i ∈ A, ti = α.
After step (f), for all nodes i ∈ S ∪A, ti = α. Therefore, after step (g), for all nodes
i ∈ S, ti will remain equal to α.

Thus, it both scenarios, we found a source component S and α such that for all i ∈ S, ti = α
after step (b) of Case 1 or after step (g) of Case 2.

Then, consider the remaining steps in the iteration.

– Case 1: During Propagate(S,V − F − S), each node k ∈ V − F − S will receive f + 1
copies of α along f + 1 disjoint paths, and set tk = α in step (c). Therefore, each node
k ∈ V − F − S will update its vk to be α in step (d).

21

– Case 2: Hence, after step (h), tj = α for all j ∈ (V − F − S) ∪ S. Thus, each node
k ∈ V − F − (A ∩ S) will update vk to be α. Recall that any node k ∈ A ∩ S does not
modify its vk, which is already equal to α.

Thus, in both cases, at the end of STEP 1 of the INNER loop, for all k ∈ V − F = V − F ∗,
vk = α.

Since all nodes in F ∗ are faulty, agreement has been reached at this point. By Lemma 8, the
agreed value is valid as well. Thus, the goal now is to show that the agreement and validity
conditions are not violated by actions taken in any future iterations of the INNER loop.

• Phase 3: At the start of Phase 3, for each fault-free node k ∈ V−F ∗, we have vk = α ∈ {0, 1}.
Then by Lemma 8, all future iterations of the INNER loop cannot assign any value other
than α to any node k ∈ V − F ∗.

After Phase 3 with F = F ∗, Algorithm BC may perform iterations for other choices of set F .
However, due to Lemma 8, the value vi at each i ∈ V−F ∗ (i.e., all fault-free nodes) continues being
equal to α. �

Theorem 5 Algorithm BC satisfies validity, agreement, and termination properties for Byzantine
consensus.

Proof: The theorem follows from Lemmas 9, 10 and 11. �

7 Generalized Fault Model

In this section, we briefly discuss how to extend the above results to exact consensus under gen-
eralized fault model. The generalized fault model [6] is characterized using fault domain F ⊆ 2V

as follows: Nodes in set F may fail during an execution of the algorithm only if there exists set
F ∗ ∈ F such that F ⊆ F ∗. Set F is then said to be a feasible fault set.

Definition 7 Set F ⊆ V is said to be a feasible fault set, if there exists F ∗ ∈ F such that F ⊆ F ∗.

Please refer to our previous work [6] for more discussion on generalized fault model.

For a set of nodes B, define N−(B) = {i | (i, j) ∈ E , i ̸∈ B, j ∈ B}, the set of incoming
neighbors of B.

Definition 8 Given F , for disjoint sets of nodes A and B, where B is non-empty.

• A
g⇒ B iff for every F ∗ ∈ F , N−(B) ∩A ̸⊆ F ∗.

• A ̸ g⇒ B iff A
g⇒ B is not true.

With the replacement of
e⇒ by

g⇒, Theorem 1 and 4 will hold for the generalized fault model.

For the generalized fault model, the definition of propagation from A to B should be modified
as follows:

22

Definition 9 For any partition A,B, F of V such that A,B are non-empty and F is a feasible

fault set, A
V−F B if for any feasible fault set F ′ ⊂ V − F , for every node i ∈ B − F ′, there exists

in G(V, E) a (A, i)-path excluding F ∪ F ′.

Then the correctness of Algorithm BC can be proved with the following changes to the algorithm:

• Whenever Algorithm BC uses f + 1 (S, i)-paths in Propagate(S,B), the new algorithm uses
all possible (S, i)-paths excluding F .

• Whenever a node i in Algorithm BC compares f + 1 values received in Propagate(S,B), in
the new algorithm node i uses all values received along all the paths excluding F to decide
how to update value t.

Note that by condition in Theorem 4, it should be easy to see that the paths used to propagate
messages contains at least one fault-free path, i.e., every node on the path is fault-free. Therefore,
the new algorithm can be shown to achieve termination, agreement, and validity similarly.

8 Example Networks

In this section, we introduce two different graphs, and use the results in the previous sections to
show that exact Byzantine consensus can be reached in these graphs.

8.1 1-Core Network

Definition 10 A graph G(V, E) consisting of n > 3f nodes is said to be a 1-core network if the
following two properties are satisfied:

• It includes a clique formed by nodes in K ⊆ V, such that |K| = 3f + 1, as a subgraph. That
is, ∀i, j ∈ K, i ̸= j, (i, j) ∈ E.

• Each node i ̸∈ K has incoming links from arbitrary 2f + 1 nodes in K. That is, for each
v ∈ V −K, there exists Kv ⊆ K such that |Kv| = 2f + 1, and ∀u ∈ Kv, (u, v) ∈ E.

It is easy to show that a core network satisfies the condition in Theorem 1.

There is a simple consensus algorithm for the 1-core network: first solve consensus in the
(3f + 1)-node clique using any existing Byzantine consensus algorithm for cliques; then all the
nodes in the clique transmit their decision value on all the outgoing links to the nodes outside the
clique; every node outside the clique decides on the majority of 2f + 1 values received from the
nodes in the clique.

8.2 2-Core Network

Definition 11 A graph G(V, E) consisting of n = 6f + 2 nodes, where f is a positive non-zero
even integer, is said to be a 2-core network if all the following properties are satisfied:

23

• It includes two disjoint cliques, each consisting of 3f +1 nodes. Suppose that the nodes in the
two cliques are specified by sets K1,K2, respectively, where K1 = {u1, u2, · · · , u3f+1} ⊂ V,
and K2 = V −K1 = {w1, w2, · · · , w3f+1}. Thus, (ui, uj) ∈ E and (wi, wj) ∈ E, for 1 ≤ i, j ≤
3f + 1, i ̸= j.

• (ui, wi) ∈ E, for 1 ≤ i ≤ 3f
2 and i = 3f + 1.

• (wi, ui) ∈ E, for 3f
2 + 1 ≤ i ≤ 3f and i = 3f + 1.

Figure 2 illustrates the 2-core network for f = 2. We will show that the 2-core network satisfies
the condition in Theorem 2. We first prove the following lemma.

Lemma 12 Let A,B,C, F be disjoint subsets of V such that |F | ≤ f and A,B,C are non-empty.

Suppose that A
V−F B and A ∪B

V−F C. Then, A
V−F B ∪ C.

Proof: The proof is by contradiction. Suppose that

• A
V−F B,

• A ∪B
V−F C, and

• A
V−F
̸ B ∪ C.

The first condition above implies that |A| ≥ f + 1. By Definition 2 and Menger’s Theorem [8], the
third condition implies that there exists a node v ∈ B∪C and a set of nodes P ⊆ V −F −{v} such
that |P | ≤ f and all (A, v)-paths excluding F contain at least one node in P . In other words, there

is no (A, v)-path excluding F ∪ P . Observe that, because A
V−F B, v cannot be in B; therefore v

must belong to set C.

Let us define the sets X and Y as follows:

• Node x ∈ X if and only if x ∈ V − F − P and there exists an (A, x)-path excluding F ∪ P .
It is possible that P ∩A ̸= Φ; thus, the (A, x)-path cannot contain any nodes in P ∩A.

• Node y ∈ Y if and only if y ∈ V − F − P and there exists an (y, v)-path excluding F ∪ P .

By the definition of X and Y , it follows that for any x ∈ X, y ∈ Y , there cannot be any (x, y)-

path excluding F ∪ P . Also, since A
V−F B, for each b ∈ B − P , there must exist an (A, b)-path

excluding F ∪ P ; thus, B − P ⊆ X, and B ⊆ X ∪ P . Similarly, A ⊆ X ∪ P , and therefore,
A ∪B ⊆ X ∪ P .

By definition of X, there are no (X ∪P, v)-paths excluding F ∪P . Therefore, because A∪B ⊆

X ∪ P , there are no (A∪B, v)-paths excluding F ∪ P . Therefore, since v ∈ C, A∪B
V−F
̸ C. This

is a contradiction. �

Lemma 13 Suppose that G(V, E) is a 2-core network. Then G satisfies the condition in Theorem
2.

24

Figure 2: A 2-core network for f = 2. For simplicity, the edges in each core, K1 and K2, are not
presented in this figure. Note that each core is a clique.

25

Proof: Consider a partition A,B, F of V, where A and B are both non-empty, and |F | ≤ f .
Recall from Definition 11 that K1,K2 also form a partition of V.

Define A1 = A ∩K1, A2 = A ∩K2, B1 = B ∩K1, B2 = B ∩K2, F1 = F ∩K1 and F2 = F ∩K2.

Define E ′ to be the set of directed links from the nodes in K1 to the nodes in K2, or vice-versa.
Thus, there are 3f

2 + 1 directed links in E ′ from the nodes in K1 to the nodes in K2, and the
same number of links from the nodes in K2 to the nodes in K1. Each pair of links in E ′, with the
exception of the link pair between a3f+1 and b3f+1, is node disjoint. Since |F | ≤ f , it should be
easy to see that, at least one of the two conditions below is true:

(a) There are at least f + 1 directed links from the nodes in K1 − F to the nodes in K2 − F .

(b) There are at least f + 1 directed links from the nodes in K2 − F to nodes the in K1 − F .

Without loss of generality, suppose that condition (a) is true. Therefore, since |K1 − F | ≥ 2f + 1

and the nodes in K2 − F form a clique, it follows that K1 − F
V−F K2 − F . Then, because

K1 − F = A1 ∪B1 and K2 − F = A2 ∪B2, we have

A1 ∪B1
V−F A2 ∪B2. (4)

|K1 − F | ≥ 2f + 1 also implies that either |A1| ≥ f + 1 or |B1| ≥ f + 1. Without loss of
generality, suppose that |A1| ≥ f + 1. Then, since the nodes in A1 ∪ B1 form a clique, it follows

that A1
V−F1−K2 B1 (recall that V − F1 −K2 = A1 ∪B1). Since V − F1 −K2 ⊂ V − F , we have

A1
V−F B1 (5)

(4) and (5), along with Lemma 12 imply that A1
V−F B1 ∪A2 ∪B2. Therefore, A1

V−F B1 ∪B2,

and A1 ∪A2
V−F B1 ∪B2. Since A = A1 ∪A2 and B = B1 ∪B2, A

V−F B. �
Interestingly, the 2-core network satisfies the necessary condition despite the fact that 2f + 1

links are not available in either direction between the nodes in K1 and K2.

9 Conclusion

This paper presents tight necessary and sufficient conditions for achieving Byzantine consensus in
synchronous networks that can be represented as directed graphs. We provide a constructive proof
of sufficiency by presenting a new Byzantine consensus algorithm for directed graphs. As briefly
stated in Section 7, the necessary condition in Theorem 4 and Algorithm BC can also be applied
with the generalized fault model in [6]. In Section 8, we also introduce two families of graphs that
satisfy the necessary and sufficient condition in Theorem 2.

References

[1] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms. McGraw-Hill Higher Education,
2006.

[2] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for distributed consensus
problems. In Proceedings of the fourth annual ACM symposium on Principles of distributed
computing, PODC ’85, pages 59–70, New York, NY, USA, 1985. ACM.

26

[3] G. Liang and N. Vaidya. Capacity of byzantine agreement with finite link capacity. In INFO-
COM, 2011 Proceedings IEEE, pages 739 –747, april 2011.

[4] G. Liang and N. H. Vaidya. Capacity of byzantine agreement: Complete characterization of
the four node network. Technical report, CSL, UIUC, 2010.

[5] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[6] L. Tseng and N. H. Vaidya. Iterative approximate byzantine consensus under a generalized
fault model. Technical report, CSL, UIUC, 2012.

[7] N. H. Vaidya, L. Tseng, and G. Liang. Iterative approximate byzantine consensus in arbitrary
directed graphs. In Proceedings of the thirty-first annual ACM symposium on Principles of
distributed computing, PODC ’12. ACM, 2012.

[8] D. B. West. Introduction To Graph Theory. Prentice Hall, 2001.

27

Appendix

A Proof of Theorem 1

We first describe the intuition behind the proof, followed by a formal proof. Intuitively, if the graph
does not satisfy the condition in Theorem 1, then the faulty nodes can force the fault-free nodes to
disagree with each other, as follows. Suppose that there exists partition L,R,C, F where L,R are
non-empty and |F | ≤ f such that C ∪R ̸ e⇒ L, and L∪C ̸ e⇒ R. Now, suppose that all the nodes in
L have input m, and all the nodes in R ∪ C have input M , where m ̸= M .

Suppose that the nodes in F are faulty. Then the the faulty nodes can behave to nodes in L
as if nodes in R ∪ C ∪ F have input m, while behaving to nodes in R as if nodes in L ∪ C ∪ F
have input M . Since the graph does not satisfy the condition in Theorem 1, nodes in L cannot
distinguish between the following two scenarios, where NL denotes the set of incoming neighbors
of L in C ∪R:

• All the nodes in NL are faulty, rest of the nodes are fault-free, and all the fault-free nodes
have input m.

• All the nodes in F are faulty, rest of the nodes are fault-free, and fault-free nodes have input
m or M .

In the first scenario, for validity, the output at nodes in L must be m. Therefore, in the second
scenario as well, the output at the nodes in L must be m.

Similarly, nodes in R cannot distinguish between the following two scenarios, where NR denotes
the set of incoming neighbors of R in C ∪ L:

• All the nodes in NR are faulty, rest of the nodes are fault-free, and all the fault-free nodes
have input M .

• All the nodes in F are faulty, rest of the nodes are fault-free, and fault-free nodes have input
m or M .

In the first scenario, for validity, the output at nodes in R must be M . Therefore, in the second
scenario as well, the output at the nodes in R must be M .

Thus, in the case when the nodes in F are faulty, nodes in L and R can be forced to decide on
distinct values, violating the agreement requirement.

Now we present a formal proof of Theorem 1.

Proof: The proof is by contradiction. Suppose that a correct Byzantine consensus algorithm (say
ALGO) exists, and there exists a partition such that C ∪ R ̸ e⇒ L and L ∪ C ̸ e⇒ R. Thus, L has
at most f incoming neighbors in R ∪ C, and R has at most f incoming neighbors in L ∪ C. We
further assume that the nodes in F (if F is non-empty) are all faulty, and the remaining nodes (in
L,C,R) are all fault-free.

Let us assume that the behavior of each node i ∈ V when using ALGO can be modeled by a
state machine. We construct an augmented network N with the following properties:11

11We use italic letters for entities in G(V, E), and non-italic letters for entities in N .

28

• For each node r in R, there are two copies in N . The two copies are named r and r2. The
two nodes r and r2 in N are copies of r in the sense that the corresponding two nodes have
identical state machine as r.

• For each node l ∈ L, there are two copies in N . The two copies are named l and l1.

• For each node k ∈ F , there are two copies in N . The two copies are named k1 and k2.

• For each node c ∈ C, there are three copies in N . The three copies are named c, c1 and c2.

The communication links in N are derived using the communication graph G(V, E). In partic-
ular, if node i has a link to node j in G, then a copy of node j in N will have a link from one copy
of node i in N .

On the other hand, if link (i, j) ∈ E then one copy of node i in N may have links to multiple
copies of node j in N . This should be viewed as a “broadcast” operation that is being simulated
unbeknownst to the state machines for the corresponding nodes in N . The same technique of
broadcast operation has also been used in [3, 4]. Exactly which copy of node i has link to a copy
of node j is represented with the edges shown in Figure 3, as described next.

• Vertices in Figure 3 represent sets of vertices in N .
Vertex R represents a set containing node r in N corresponding to each node r ∈ R.
Vertex R2 represents a set containing node r2 in N corresponding to each node r ∈ R.
Vertex F1 represents a set containing node k1 in N corresponding to each node k ∈ F .
Vertex F2 represents a set containing node k2 in N corresponding to each node k ∈ F .
Vertices C, C1, C2, L, and L1 analogously represent copies of appropriate nodes in G.

• The directed edge from vertex R to vertex F1 in Figure 3 indicates that, if for r ∈ C and
k ∈ F , link (r, k) ∈ E , then link (r,k1) is in N . Similarly, the directed edge from vertex F2 to
vertex L in Figure 3 indicates that, if for k ∈ F and l ∈ L, link (k, l) ∈ E , then link (k2,l) is
in N . Other solid edges in Figure 3 represent other communication links in N similarly.

The dotted arrows are also communication links in N , but we use dots to emphasize that the
links are broadcast links in the sense discussed above. There are four such “broadcast edges”
in the figure. The broadcast edge from L to R and R1 implies that if for l ∈ L and r ∈ R,
link (l, r) ∈ E , then messages from node l in N being sent to the state machine r are sent to
r and r1 both in N .

• Five of the edges do not terminate at any vertex in Figure 3 (one such edge at each of the
vertices C1, L1, R2, C2, and C). This signifies that the corresponding transmissions are
discarded. For instance, transmissions from L1 to R are discarded. More specifically, for
l ∈ R and r ∈ R, if there is a link (r, l) ∈ E , then transmissions by node l1 (in N) intended
for state machine r are silently discarded without the knowledge of node l1).

Each node in G(V, E) has an input as discussed previously. An input is also available to each
node in N . In our discussion, we will assume that the fault-free nodes represented by any single
vertex in Figure 3 all have the identical input. Specifically, the input at the nodes represented by
vertex L is m, and the input is shown in a rectangle next to vertex L in Figure 3. Similarly, input
at nodes represented by the other vertices is also shown in the figure.

29

Let us define:

NL = set of incoming neighbors of L in R ∪ C

NR = set of incoming neighbors of R in L ∪ C

By assumption, |NL| ≤ f and |NR| ≤ f .

We now show how the behavior of a certain subset of vertices in N is identical to the behavior
of corresponding nodes in the original network G. In each case, we consider partition L,R,C, F of
V.

• Case 1: Nodes in NR are faulty, and the other nodes in V are fault-free: We can model the
fault-free nodes by the corresponding nodes in L1, R, C1 and F1 in N . An instance of the
behavior of faulty nodes in NR is modeled by corresponding nodes in L, L1, C and C1. Since
the fault-free nodes in L,C,R, F must agree on value M in G, the nodes represented by R in
N will also terminate with output M .

• Case 2: Nodes in NL are faulty, and the other nodes in V are fault-free: We can model the
fault-free nodes by the corresponding nodes in L, R2, C2 and F2 in N . An instance of the
behavior of faulty nodes in NL is modeled by corresponding nodes in R, R2, C and C2. Since
the fault-free nodes in L,C,R, F must agree on value m in G, the nodes represented by L in
N will also terminate with output m.

• Case 3: Nodes in set F are faulty, and the other nodes in V are fault-free: We can model
the fault-free nodes in V − F = L ∪ C ∪ R by the corresponding nodes in L, C, R in N . An
instance of the behavior of faulty nodes in F is modeled by the behavior of F1 and F2. Since
the fault-free nodes in L,C,R must agree on a common value in G, nodes represented by L
and R will also terminate with agreement on an identical value. However, this contradicts
with Cases 1 and 2, which conclude that nodes in R and L output M and m, respectively.

The above contradiction proves that the condition in Theorem 1 is necessary. �

30

Figure 3: Augmented Network N

31

